BACHELOR OF COMPUTER APPLICATIONS (BCA)

(Revised Syllabus)

BCA(Revised Syllabus)/ASSIGN/SEMESTER-II

ASSIGNMENTS

(July - 2021 & January - 2022)

MCS-011, MCS-012, MCS-015, MCS-013, BCSL-021, BCSL-022,

SCHOOL OF COMPUTER AND INFORMATION SCIENCES INDIRA GANDHI NATIONAL OPEN UNIVERSITY MAIDAN GARHI, NEW DELHI – 110 068

CONTENTS

Course Code	Assignment No.	Submission-Schedule		Page No.
		For July- December Session	For January- June Session	
MCS-011	BCA(2)/011/Assignment/21-22	31 st October, 2021	15 th April, 2022	4
MCS-012	BCA(2)/012/Assignment/21-22	31st October, 2021	15 th April, 2022	6
MCS-015	BCA(2)/015/Assignment/21-22	31st October, 2021	15 th April, 2022	11
MCS-013	BCA(2)/013/Assignment/21-22	31st October, 2021	15 th April, 2022	14
BCSL-021	BCA(2)/L-021/Assignment/21-22	31 st October, 2021	15 th April, 2022	17
BCSL-022	BCA(2)/L-022/Assignment/21-22	31 st October, 2021	15 th April, 2022	18

Important Notes

- 1. Submit your assignments to the Coordinator of your Study Centre on or before the due date.
- 2. Assignment submission before due dates is compulsory to become eligible for appearing in corresponding Term End Examinations. For further details, please refer to BCA Programme Guide.
- 3. To become eligible for appearing the Term End Practical Examination for the lab courses, it is essential to fulfill the minimum attendance requirements as well as submission of assignments (on or before the due date). For further details, please refer to the BCA Programme Guide.

Course Code : ECO-02

Course Title : Accountancy-1

Assignment Number : BCA (2)/02/Assignment/2021-22

Maximum Marks : 100 Weightage : 25%

Last Dates for Submission: 31st October, 2021 (For July Session)

15th April, 2022 (For January Session)

Here is the link of assignment https://webservices.ignou.ac.in/assignments/bcom.htm

Course Title : Problem Solving and Programming
Assignment Number : BCA(2)/011/Assignment/2021-22

Maximum Marks : 100 Weightage : 25%

Last Dates for Submission: 31st October, 2021 (For July Session)

15th April, 2022 (For January Session)

There are seven questions in this assignment, which carry 80 marks. Rest 20 marks are for viva-voce. Answer all the questions. You may use illustrations and diagrams to enhance the explanations. Please go through the guidelines regarding assignments given in the Programme Guide for the format of presentation. Insert comments in the code for better understanding.

Q1: Write the following functions that:

 $(2 \frac{1}{2} X 4 = 10 Marks)$

- a) Request the user for two integers and outputs them and their sum.
- b) Request the user for two integers and outputs their remainder after division.
- c) Request the user for two floats and outputs their product.
- d) Request the user for a word and prints it twice on the same row.

Write a C (main) program to provide the above functions as options to the user using *switch* statement and performs the functions accordingly.

- Q2: Write an algorithm, draw a corresponding flowchart and write an interactive program to convert a binary number to its decimal equivalent. (20 Marks)
- **Q3:** Write the following functions that:

 $(2 \frac{1}{2} X 4 = 10 Marks)$

- a) Request the user to input a 5 digit number and reverse the given number and print it.
- b) Request the user to input two floats and outputs the largest of the inputs.
- **c**) Request the user to input an integer and, if the number is divisible by two, divides it by two, otherwise multiplies it by three and output the result.
- **d**) Request the user for three integers and output whether any of them are equal. Use only one if-else-statement

Write a C (main) program to provide the above functions as options to the user using switch statement and perform the functions accordingly.

Q4: Write a program which has 7 functions. The functions should be: (10 Marks) *main()* this calls the other 6 functions namely:

fget_long() a function which returns a long data type from a file
fget_short() a function which returns a short integer variable from a file
fget_float() a function which returns a floating point variable from a file
fprt_long() a function which prints its single, long argument into a file
fprt_short() a function which prints its single, short argument into a file
fprt_float() a function which prints its single, floating point argument into a file

You should use *scanf()* to get the values of the variables from the input (the keyboard) and *printf()* to print the values to the terminal. Pay attention to using the correct format for each of the data types. If you have a compiler that only knows double, use double in place of float - or use it anyway if you want.

Q5: Modify question 5 to use strings input from the keyboard for the input and output file names. The program should prompt for an input filename and an output filename. These names should be stored in arrays with a *NULL* terminating character and the array names used as arguments to the *fopen()* function in place of the filename constants (like "a2.c" and "a2out.c") used in question 5.

Also prompt for and input the modes ("r" or "w") using the same string function. Remember that, even though the 'r' and 'w' are single characters, the mode is a string with a *NULL* at the end. (10 Marks)

- **Q6:** Write an interactive C program which illustrates the following concepts: (10 Marks)
 - (i) Function with no arguments and no return value.
 - (ii) Function with arguments and no return value.
 - (iii) Function with arguments and with return value.
- Q7: Mention the type of applications which can be developed using C language. Also, list the latest C compilers that are available in the market by giving the details like the name of the compiler, version, vendor's name, DOS based /WINDOWS based / Others, year of release, etc.. (10 Marks)

Course Title : Computer Organization and Assembly

Language Programming

Assignment Number : BCA(2)/012/Assignment/2021-22

Maximum Marks : 100 Weightage : 25%

Last Dates for Submission : 31st October, 2021 (For July Session)

15th April, 2022 (For January Session)

There are four questions in this assignment, which carries 80 marks. Rest 20 marks are for viva voce. You may use illustrations and diagrams to enhance the explanations. Please go through the guidelines regarding assignments given in the Programme Guide for the format of presentation. Answer to each part of the question should be confined to about 300 words. Make suitable assumption, if any.

Question 1:

(a) Please refer to Figure 4 of Unit 1 of Block 1 on page 11. Assuming the same machine to be used for execution of the following three consecutive instructions:

LDA A; Load the content of Memory location A into the Accumulator Register.

ADD B; Add the content of memory location B from Accumulator Register.

STR C; Stores the content of Accumulator register to memory location C.

However, this machine is different from the example of Figure 4 in the following ways:

- Each memory word of this new machine is of 32 bits in length.
- Each instruction is of length 32 bits with 16 bits for operation code (opcode) and 16 bits for specifying one direct operand.
- The Main Memory of the machine would be of size 64 KB.
- The three consecutive instructions are placed starting from memory location (200E)_h; operand A is at location (500A)_h and contains a value (00010056)_h, Operand B is at location (500B)_h and contains a value (0122A0EE)_h and operand C is at location (500C)_h and contains a value (00000000)_h.
- The AC, IR and MBR registers are of size 32 bits, whereas PC and MAR registers are of size 16 bits. The initial content of PC register is (200E)_h

Draw the diagrams showing the following information:

(i) Initial State of the machine with the addresses and content of memory locations in hexadecimal. Show only those address locations of the memory that store the instruction and data. Also show content of all the stated registers. (2 Marks)

- (ii) Draw three more diagrams, each showing the state of machine after execution of every instruction viz. LDA, ADD and STR. Show the changes in the values of Registers and memory locations, if any, due to execution of instruction. Show all the addresses and values in hexadecimal notations. (3 Marks)
- **(b)** Perform the following conversion of numbers:

(2 Marks)

- i) Decimal $(3216547890)_{10}$ to binary and hexadecimal
- ii) Hexadecimal (666777888)_h into Octal.
- iii) String "MCS12 is part of BCA" into UTF 8
- iv) Octal (8673451)_O into Decimal
- (c) Simplify the following function using K-map: $F(A, B, C, D) = \Sigma (2, 3, 6, 7, 10, 14)$ Draw the circuit for the function using NAND gates. (2 Marks)
- (d) Consider the Adder-Subtractor circuit as shown in Figure 3.15 page 76 of Block 1. Explain how this circuit will perform subtraction (A-B), if the value of A is 0111 and B is 0001. You must list all the bit values including Cin and Cout and overflow, if any. (1 Marks)
- (e) Explain the functioning of a 3× 8 Decoder. You should draw its truth table and explain its logic diagram with the help of an example input. (2 Marks)
- (f) Assume that a source data value 0111 was received at a destination as 0101. Show how Hamming's Error-Correcting code bits will be appended to source data, so this error of one bit is identified and corrected at the destination. You may assume that transmission error occurs only in the source data and not the source parity bits. (2 Marks)
- (g) Explain functioning of D flip flop with the help of a logic diagram and characteristic table.

 Also explain the excitation table of this flip-flop. (2 Marks)
- (h) Explain the functioning of an edge triggered flip-flop and a 4×1 multiplexer with the help of a diagram of each. (2 Marks)
- (i) Represent $(-34.0625)_{10}$ and $(0.0000000000125)_{10}$ in IEEE 754 single precision and double precision formats. (2 Marks)

Question 2:

- (a) Reference Figure 2(b) on page 8 in Unit 1 of Block 2. Draw the Internal organisation of a 64×8 RAM. Explain all the Input and Output of this organisation. Also answer the following:
 (i) How many data input and data output lines does this RAM needs? Explain your answer.
 (ii) How many address lines are needed for this RAM? Give reason in support of your answer.
 (2 Marks)
- (b) A computer has 16 MB RAM with each memory word of 32 bits. It has cache memory having 512 blocks having a size of 128 bits (4 memory words). Show how the main memory address (CA30FB)_h will be mapped to cache address, if

- (i) Direct cache mapping is used
- (ii) Associative cache mapping is used
- (iii)Two way set associative cache mapping is used.

You should show the size of tag, index, main memory block address and offset in your answer. (3 Marks)

- (c) What is the need of I/O interface in a computer? What are the functions of I/O interface? Explain the structure of I/O interface with the help of a diagram. (3 Marks)
- (d) What is Interrupt driven I/O? Explain with the help of a flowchart. Differentiate between the working of Interrupt driven I/O and Programmed I/O. (2 Marks)
- (e) Assume that a disk has 512 tracks, with each track having 128 sectors and each sector is of size 8 M bits. The cluster size in this system can be assumed to be as 8 sectors. A file having the name *assignmentofsemester1.txt* is of size 512 MB. Assume that disk has 128 free continuous clusters. How can this file be allotted space on the disk? Also show the content of FAT after the space allocation to this file. You may make suitable assumptions. (4 Marks)
- (f) Explain the following giving their uses and advantages/disadvantages.

(Word limit for answer of each part is 50 words ONLY)

(6 Marks)

- (i) External Communication Interfaces of computers
- (ii) Keyboard technology
- (iii) DVD-ROM
- (iv) DMA
- (v) Video Memory
- (vi) LCD Monitor Technology

Question 3:

(a) A uni-processor system, having single core, has 8 general purpose registers. The machine has 256-byte RAM. The size of every register and memory word is 16 bits. The computer uses fixed length instructions of size 16 bits each. An instruction of the machine can have only one operand, which can be either a direct memory operand or a register operand. Both these operands use direct addressing. An instruction of a machine consists of bits for operation code, one bit for addressing mode, and bits for memory operand or register operand. The machine has about 128 different operation codes. The addressing mode bits specifies addressing mode as:

Addressing mode bit	Register Operand	Memory Operand	
0	-	Direct	
1	Direct	-	

The special purpose registers, which are other than general purpose registers, are - Program Counter (PC), Memory Address Register (MAR), Data Register (DR) and Flag registers (FR). The first register of the general-purpose registers can be used as Accumulator Register. The size of Integer operands on the machine may be assumed to be equal to the size of

accumulator register. In order to execute instructions the machine has another special register called Instruction Register (IR) of size 16 bits, as each instruction is of this size. Perform the following tasks for the machine. (Make and state suitable assumptions, if any.)

- (i) Design suitable instruction formats for the machine. Specify the size of different fields that are needed in the instruction format. Also indicate how many bits of the instructions are unused for this machine. Explain your design of instruction format. Also indicate the size of each register. (3 Marks)
- (ii) List at least two valid instructions; put some valid data values in registers and memory locations; and demonstrate examples of different addressing modes for this machine.

(2 Marks)

(iii) Assuming that the instructions are first fetched to Instruction Register (IR), memory operand is brought to DR register and result of an operation is stored in the Accumulator register; write and explain the sequence of micro-operations that are required to fetch and execute an instruction, which performs addition of register operand to the accumulator register. Make and state suitable assumptions, if any.

(5 Marks)

- (b) Assume that you have a machine, as shown in section 3.2.2 of Block 3 having the micro-operations given in Figure 10 on page 62 of Block 3. Consider that R1 and R2 both are 8 bit registers and contains 11110000 and 00110110 respectively. What will be the values of select inputs, carry-in input and result of operation (including carry out bit) if the following micro-operations are performed? (For each micro-operation you may assume the initial value of R1 and R2 as given above) (2 Marks)
 - (i) Decrement R1
 - (ii) Add R1 and R2 with carry
 - (iii)AND R1 and R2
 - (iv) Shift right R1
- (c) Consider that an instruction pipeline has only three stages namely instruction fetch and decode (IFD), Operand Fetch (OF) and Instruction execute and store results (IES). Draw and instruction pipeline diagram showing execution of 5 sequential instructions. What are the problems of this instruction pipelining? (3 Marks)
- (d) Explain the functioning of Wilkes control unit with the help of a diagram. Also differentiate between Hardwired control and micro-programmed control. (2 Marks)
- (e) Explain the characteristics of a RISC machine. RISC machines, in general, have large register file. How can this register file be used for parameter passing? Explain with the help of a diagram. What are the advantages of using instruction pipelining in a RISC processor?

(3 Marks)

Question 4:

- (a) Write a program using 8086 assembly Language (with proper comments) that accepts a two-digit input from the keyboard, converts it into an equivalent binary number and subtracts this value from every element of an array of length ten bytes. Assume that the array is stored in the memory. Make suitable assumptions, if any.

 (7 Marks)
- (b) Write a NEAR subroutine using 8086 assembly Language (with proper comments) that returns the smallest byte value in a byte array of length 5-bytes. The array is declared in the calling program and the base address of the array is passed to the subroutine in the stack. You should write both the calling program and subroutine. (7 Marks)
- (c) Explain the following in the context of 8086 Microprocessor:

(6 Marks)

- (i) Physical address calculation in code and data segment
- (ii) Interrupt vector table and its use
- (iii)Based Indexed addressing mode with the help of an example

Course Title : Communication Skills

Assignment Number : BCA(2)/015/Assignment/2021-22

Maximum Marks : 100 Weightage : 25%

Last date of submission : 31st October, 2021 (For July Session)

15th April, 2022 (For January Session)

This assignment has eight questions. Answer all questions. Assignment is for 100 marks. You may use illustrations and diagrams to enhance the explanations. Please go through the guidelines regarding assignments given in the Programme Guide for the format of presentation.

Q1: Read the following passage and answer the questions given below:

Time management has become one of the key issues of the second half of the twentieth century. Managers, grappling with work pressures and deadlines, have come to recognize that time is a precious commodity to be 'saved', 'gained', and not 'wasted' or 'lost'. But if time is a commodity, how then can we best describe, measure and manage it?

To describe and manage it, imagine a line that goes back to the beginnings of creation and continues into the mists of the future. And on that line are a number of significant marks-these separate the past from the present from the future. And within each time zone-past, present and future-we can differentiate periods of time from points of time. For example, the 1980s gave us a period of rapid economic growth; black Monday was a point of sudden financial catastrophe.

How can this brief analysis help the international manager? Firstly, there is the link between past, present and future. In other words, historical performance should be a guide to the future, and the present ought to represent last year's forecast. So change-that which normally differentiates any two periods on our continuum - can be seen as a gradual evolution rather than a dramatic revolution.

Secondly, the use of a time-planning system, on which key points and periods are plotted, enables managers to organize their activities so that bottlenecks can be avoided and deadlines can be met. So stress, where the jobs to be done exceed the available time, can be reduced to an acceptable and productive level.

i. Tick the right choice:

Time management was one of the major issues

- a) in the beginning of the twentieth century
- b) in the latter part of the twentieth century
- c) in the twentieth century

(1 Mark)

• •	~ : 1			1	
11	Give two reasons wh	iv managere are	um os patvina e	ch importance to	time management
11.	OTVE TWO TEASORS WI	iv managois aic	z grving so mu	on importance to	unic management

(2 Marks)

- iii. Explain the difference between period of time and point of time giving your own examples. (4 Marks)
- iv. Do you think time management can reduce stress? Discuss. (3 Marks)
- Q2: Pick out words/phrases from the passage which have the following meanings. (10 Marks)
 - i. time when the world was made
 - ii. area
 - iii. latest time by which an activity must be completed.
 - iv. step by step.
 - v. article which can be bought and sold
 - vi. make a division between two things
 - vii. work very hard to solve a problem
 - viii. unclear period of time
 - ix. time or place when jobs cannot be carried out, usually because of other pressures
 - x. terrible event.
- Q3: Put the verbs in brackets in their correct form. (10 Marks)

We(write) to tell you about the reorganization at Softsys. As you
(know), we(trade) for two years now and
iv(establish) a reputation as a reliable local supplier of business
software. On the one hand, the rapid growth in our business during this
periodv(give) us very good results; on the other, this increased
businessvi(now place) a lot of pressure on our organization. So,
we(currently change) the structure of Softsys so that we can
continue to provide the level of service and support that you, as a valued customer,
viii(expect). Weix(not plan) any major changes; the
companyx(continue) to be owned and run by the three partners.

Q4: You are looking for a job as software developer and your prospective employer asked you to prepare a presentation (PPT) on the following:

Your career so far along with your interested areas, expertise and details about the projects handled.

Note: You may use visual aids to support your presentation (15 Marks)

- Q5: You have seen a job with a multinational company advertised in a national newspaper for the post of Systems Analyst position. Prepare a good biodata/resume to apply against it.

 (15 Marks)
- **Q6:** A benefactor has given a sum of money to your school/college. One condition of the gift is that both students and staff must be involved in deciding how the money is to be used. A further condition is that the money must be spent on permanent and tangible things.

You have been asked by the principal of the school/college to survey the views of staff and students and to present him/her with an information report. Write a report in about 250 words. (20 Marks)

Q7: Mark the stress in the following words:

(10 Marks)

i) attend attention

ii) believe belief

iii) assist assistanceiv) lovely lovelinessv) commerce commercial

Q8: Write short notes on the following:

(10 Marks)

- i) The essentials of Minutes of the Meeting.
- ii) Effective group discussions

Course Title : Discrete Mathematics

Assignment Number : BCA (2)/013/Assignment/2021-22

Maximum Marks : 100

Last Date of Submission : 31st October, 2021 (for July Session)

15th April, 2022 (for January Session)

There are eight questions in this assignment, which carries 80 marks. Rest 20 marks are for viva-voce. Answer all the questions. You may use illustrations and diagrams to enhance the explanations. Please go through the guidelines regarding assignments given in the Programme Guide for the format of presentation.

Question1:

- (a) What is proposition? Explain different logical connectives used in proposition with the help of example. (3 Marks)
- (b) Make truth table for followings.

(4 Marks)

- i) $p \rightarrow (q \lor r) \land p \land \sim q$
- ii) $p \rightarrow (\sim r \lor \sim q) \land (p \lor r)$
- (c) Give geometric representation for followings:

(3 Marks)

- i) R x { 3}
- ii) $\{1, 5\} \times (3, -2)$

Question2:

(a) Draw a Venn diagram to represent followings:

(3 Marks)

- i) $(A \cap B \cup C) \cup (A \cap B \cup C)$
- ii) $(A \cap B \cup C) \cap (A \cup B \cap C)$
- (b) Write down suitable mathematical statement that can be represented by the following symbolic properties. (2 Marks)
 - i) $(\exists x) (\forall y) (\forall z) Q$
 - ii) \forall (z) (\forall y) (\exists z) P
- (c) Show whether $\sqrt{5}$ is rational or irrational.

(3 Marks)

(d) Explain circular permutation with the help of an example.

(2 Marks)

Question 3:

(a) Make logic circuit for the following Boolean expressions:

(6 Marks)

- i) (x' y z') + (xyz)'
- ii) (x'y) (y'z') (yz')

- iii) (xyz) + (x'y'z)
- (b) What is a tautology? If P and Q are statements, show whether the statement $(P \to Q) \lor (Q \to P)$ is a tautology or not. (4 Marks)

Question 4:

- (a) How many different committees of 6 professionals can be formed, if each committee contains at least 1 Professor, at least 2 Technical Managers and 1 Database Experts from list of 6 Professors, 5 Technical Managers and 8 Database Experts? (4 Marks)
- (b) What are Demorgan's Law? Explain the use of Demorgen's law with the help of example.

(4 Marks)

(c) Explain addition theorem in probability.

(2 Marks)

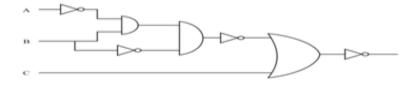
Question 5:

(a) How many ways are there to distribute 15 district objects into 5 distinct boxes with:

(3 Marks)

- i) At least three empty box.
- ii) No empty box.
- (b) Find how many 3 digit numbers are even?

(3 Marks)


(c) Set A,B and C are: $A = \{1, 2, 3, 4, 5, 7, 8, 9, 11, 17\}$, $B = \{1, 2, 3, 4, 5, 9, 11, 12\}$ and $C = \{2, 3, 5, 7, 9, 10, 11, 12, 13\}$.

Find
$$A \cap B \cup C$$
, $A \cup B \cup C$, $A \cup B \cap C$ and $(B \sim C)$

(4 Marks)

Question 6:

- (a) How many words can be formed using letter of TEACHER using each letter at most once? (3 Marks)
- i) If each letter must be used,
- ii) If some or all the letters may be omitted.
- (b) Find boolean expression for the output of the following logic circuit. (3 Marks)

(c) Prove that
$$1^2 + 2^2 + 3^2 + ... + n^2 = n(n+1)(2n+1)/6$$
; $\forall n \in \mathbb{N}$ (4 Marks)

Question 7:

- (a) What is principle of duality? Explain with example. (3 Marks)
- (b) What is power set? Write power set of set $A=\{1,2,3,4,7,9,11\}$. (3 Marks)
- (c) What is a function? What is domain and range of a function? Explain with example.

(4 Marks)

Question 8:

(a) Find inverse of the following function: (3 Marks)

$$f(x) = \frac{x^3 + 2}{x - 3} \quad x \neq 3$$

- (b) Explain equivalence relation with example. (3 Marks)
- (c) Prove that the inverse of one-one onto mapping is unique. (2 Marks)
- (d) What is counterexample? Explain with an example. (2 Marks)

Course Title : C Language Programming

Assignment Number : BCA(2)/L-021/Assignment/2021-22

Maximum Marks : 50 Weightage : 25%

Last date of Submission : 31st October, 2021 (for July Session)

15th April, 2022 (for January Session)

This assignment has only one question. This question is for 40 marks. Rest 10 marks are for viva-voce. You may use illustrations and diagrams to enhance the explanations. Please go through the guidelines regarding assignments given in the programme guide for the format of presentation.

Q1: Write an interactive program which prompts the user with the following options on the opening menu: (40 Marks)

- 1) Student information
- 2) Theory counselling batch-scheduling
- 3) Practical counselling batch-scheduling
- 4) Assignment submissions
- 5) Change of the correspondence address
- 6) General Queries
- 7) Quit

Enter your choice:

If an "1" is entered, prompt the student for the enrolment number and display the student information containing the details the semester he registered for, year of study, name of the programme, batch, duration details, name of the study centre, name of the regional centre, details regarding the fees s/he paid etc . If "2" is entered, it should give the schedule for the theory counselling upon giving the batch number as input. If "3" is entered, it should give the schedule for the practical counselling upon giving the batch number as input. If "4" is entered it should display the assignment submission schedules and viva voce schedules. If "5" is entered it should display the present correspondence address and should prompt the user to enter the change in the same if any and the necessary file is to be updated with the revised address. If "6" is entered it should present the general frequently asked questions. If "7" is entered, exit the program. If the user enters any letters or numbers other than the choice, redisplay the prompt. All output should go to the terminal and all input should come from the keyboard.

Note: You must execute the program and submit the program logic, sample input and output along with the necessary documentation for this question. Assumptions can be made wherever necessary.

Course Title : Assembly Language Programming Lab
Assignment Number : BCA(2)/L-022/Assignment/2021-22

Maximum Marks : 50 Weightage : 25%

Last Dates for Submission: 31st October, 2021 (For July Session)

15th April, 2022 (For January Session)

This assignment has two questions of total of 40 marks. Rest 10 marks are for viva voce. Please go through the guidelines regarding assignments given in the programme guide for the format of presentation.

Question 1: (10 Marks)

Design a two bit counter circuit that counts from 0 to 3. It should have states 00, 01 and 10 and 11. The initial state of the counter may be assumed to be 11. The counter will be in following successive states: 11, 00, 01, 00, 10, 11, 00, 01, 10, 11 ... Use J-K flip flop to design the circuit. You should design the circuit using state transition diagram and Karnaugh's maps.

Question 2: $(3 \times 10 = 30 \text{ Marks})$

Write and run following programs using 8086 assembly language.

- (a) Write and run a 8086 Assembly language program that converts a two digit packed BCD number stored in a byte locations in the memory, into an equivalent binary number. The output should be stored in AL register. For example, if the byte location contains a packed BCD '25', then the BCD number should be processed and converted to equivalent binary value, which is 00011001₂. This result should be stored in AL register.
- (b) Write and run (using appropriate calling program) a near procedure in 8086 assembly language, which is passed a single parameter by the calling program. The procedure checks if the input parameter is an even number or not. If the input parameter is even then a value of 1 is returned to the calling program, else a value 0 is returned. The calling program based on the returned value prints "EVEN" or "ODD". You may assume that the parameter value would always be greater than or equal to 1. Make and state suitable assumptions, if any.
- (c) Write and run a 8086 assembly language program that finds the factorial of first N natural numbers. The value of N is input to the assembly program. The factorial value is stored in AX register. Assume that the value of N is between 1 and 5 only.